论文标题

一种预测员工食品和餐馆的食品和饮料销售的贝叶斯方法

A Bayesian Approach for Predicting Food and Beverage Sales in Staff Canteens and Restaurants

论文作者

Posch, Konstantin, Truden, Christian, Hungerländer, Philipp, Pilz, Jürgen

论文摘要

准确的需求预测是成功管理餐馆和员工食堂的关键方面之一。特别是,正确预测菜单项的未来销售允许精确订购食品库存。从环境的角度来看,这可以确保保持较低的消费前食物浪费,而从管理的角度来看,这对于保证餐馆的盈利能力至关重要。因此,我们有兴趣预测每日售出的给定菜单项的未来值。相应的时间序列显示出多种强烈的季节性,趋势变化,数据差距和离群值。我们提出了一种预测方法,该方法仅基于从销售系统中检索到的数据,并允许人类直接的解释。因此,我们提出了两个通用添加剂模型,以预测未来的销售。在一项广泛的评估中,我们考虑了在休闲餐厅收集的两个数据集和一个由多个时间序列组成的大型员工食堂,分别涵盖了20个月的时间。我们表明,所提出的模型符合所考虑的餐厅数据的功能。此外,我们将方法的预测性能与其他公认的预测方法的性能进行了比较。

Accurate demand forecasting is one of the key aspects for successfully managing restaurants and staff canteens. In particular, properly predicting future sales of menu items allows a precise ordering of food stock. From an environmental point of view, this ensures maintaining a low level of pre-consumer food waste, while from the managerial point of view, this is critical to guarantee the profitability of the restaurant. Hence, we are interested in predicting future values of the daily sold quantities of given menu items. The corresponding time series show multiple strong seasonalities, trend changes, data gaps, and outliers. We propose a forecasting approach that is solely based on the data retrieved from Point of Sales systems and allows for a straightforward human interpretation. Therefore, we propose two generalized additive models for predicting the future sales. In an extensive evaluation, we consider two data sets collected at a casual restaurant and a large staff canteen consisting of multiple time series, that cover a period of 20 months, respectively. We show that the proposed models fit the features of the considered restaurant data. Moreover, we compare the predictive performance of our method against the performance of other well-established forecasting approaches.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源