论文标题

重新访问磁化圆环和轨道压缩中的模块化对称性

Revisiting modular symmetry in magnetized torus and orbifold compactifications

论文作者

Kikuchi, Shota, Kobayashi, Tatsuo, Takada, Shintaro, Tatsuishi, Takuya H., Uchida, Hikaru

论文摘要

我们研究$ t^2 $的模块化对称性,以及与磁通量的Orbifold Comfactification。 $ | m | $ $零模型在$ t^2 $上带有磁性磁通$ m $。它们的波形和大量模式的举止是重量$ 1/2 $的模块化形式,代表$γ\ equiv sl的双覆盖组(2,\ mathbb {z})$,$ \ wideTildeldeldeldeldeldectelg \ equiv \ equiv \ wideTilde {sl}(sl}(2,2,\ m m mathbb {z})$。 $ t^2 $上的每个波函数与磁性通量$ m $在$ \widetildeγ(2 | m |)$下转换,这是$ \ widetilde {sl}(2,\ mathbb {z})$的普通子组。然后,$ | M | $零模型是商组的表示形式$ \widetildeγ'_ {2 | M |} \ equiv \ equiv \wideTildeγ/\ widetildec(2 | m |)$。我们还研究了扭曲和移动的Orbifolds上的模块化对称性,$ t^2/\ mathbb {z} _n $。通过扭曲和移位的特征值将波形分解为较小的表示。他们为我们提供了$ t^2 $的可简化表示形式。

We study the modular symmetry in $T^2$ and orbifold comfactifications with magnetic fluxes. There are $|M|$ zero-modes on $T^2$ with the magnetic flux $M$. Their wavefunctions as well as massive modes behave as modular forms of weight $1/2$ and represent the double covering group of $Γ\equiv SL(2,\mathbb{Z})$, $\widetildeΓ \equiv \widetilde{SL}(2,\mathbb{Z})$. Each wavefunction on $T^2$ with the magnetic flux $M$ transforms under $\widetildeΓ(2|M|)$, which is the normal subgroup of $\widetilde{SL}(2,\mathbb{Z})$. Then, $|M|$ zero-modes are representations of the quotient group $\widetildeΓ'_{2|M|} \equiv \widetildeΓ/\widetildeΓ(2|M|)$. We also study the modular symmetry on twisted and shifted orbifolds $T^2/\mathbb{Z}_N$. Wavefunctions are decomposed into smaller representations by eigenvalues of twist and shift. They provide us with reduction of reducible representations on $T^2$.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源