论文标题

开放量子系统中的分数量子厅状态的命运:完整liouvillian相关拓扑状态的表征

Fate of fractional quantum Hall states in open quantum systems: characterization of correlated topological states for the full Liouvillian

论文作者

Yoshida, Tsuneya, Kudo, Koji, Katsura, Hosho, Hatsugai, Yasuhiro

论文摘要

尽管以前对Lindblad方程描述的开放量子系统进行了广泛的分析,但尚不清楚即使在跳跃期间的存在下,相关拓扑状态(例如分数量子霍尔状态)是否仍能保持相关状态。在本文中,我们介绍了liouvillian的伪旋转数量,该数字是通过仅针对双打希尔伯特空间的一个子空间扭曲边界条件来计算的。这种拓扑不变的存在阐明,即使在跳跃项的存在下,拓扑特性也保持不变,这并不能缩小有效的非弱点汉密尔顿(Hamiltonian)的差距(通过忽略跳跃术语获得)。换句话说,拓扑特性被编码为有效的非热汉密尔顿式,而不是全部的liouvillian。当跳跃术语可以写入双倍的希尔伯特空间中的严格块( - 较慢)三角形矩阵时,这一点特别有用,在这种情况下,跳跃项的存在或不存在不会影响liouvillian的频谱。使用伪旋转的Chern数,我们以两体损失来解决分数量子厅状态的表征,但没有增益,即使在跳跃项的存在下,也保留了非弱点分数量子霍尔状态的拓扑。该数值结果还支持使用非热汉密顿的使用,这大大降低了数值成本。可以扩展类似的拓扑不变性,以治疗其他空间维度和对称性的相关拓扑状态(例如,具有反转对称性的一维开放量子系统),表明我们方法的多功能性很高。

Despite previous extensive analysis of open quantum systems described by the Lindblad equation, it is unclear whether correlated topological states, such as fractional quantum Hall states, are maintained even in the presence of the jump term. In this paper, we introduce the pseudo-spin Chern number of the Liouvillian which is computed by twisting the boundary conditions only for one of the subspaces of the doubled Hilbert space. The existence of such a topological invariant elucidates that the topological properties remain unchanged even in the presence of the jump term which does not close the gap of the effective non-Hermitian Hamiltonian (obtained by neglecting the jump term). In other words, the topological properties are encoded into an effective non-Hermitian Hamiltonian rather than the full Liouvillian. This is particularly useful when the jump term can be written as a strictly block-upper (-lower) triangular matrix in the doubled Hilbert space, in which case the presence or absence of the jump term does not affect the spectrum of the Liouvillian. With the pseudo-spin Chern number, we address the characterization of fractional quantum Hall states with two-body loss but without gain, elucidating that the topology of the non-Hermitian fractional quantum Hall states is preserved even in the presence of the jump term. This numerical result also supports the use of the non-Hermitian Hamiltonian which significantly reduces the numerical cost. Similar topological invariants can be extended to treat correlated topological states for other spatial dimensions and symmetry (e.g., one-dimensional open quantum systems with inversion symmetry), indicating the high versatility of our approach.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源