论文标题

在受约束的非平衡系统中存储能量

Storage of energy in constrained non-equilibrium systems

论文作者

Zhang, Yirui, Giżyński, Konrad, Maciołek, Anna, Hołyst, Robert

论文摘要

我们研究了定义为能量U的数量$ \ MATHCAL {T} $,以非平衡稳态(NESS)存储在其在平衡$ u_0 $中的价值上,$ΔU= U-U_0 $由热流量$ J_ {U-J_ {u-j_ {u-u_0 $划分。最近的一项研究表明,$ \ Mathcal {t} $在稳态中最小化(Phys.Rev.E.99,042118(2019))。我们使用带有三种能量传递方法的理想气体系统评估了这一假设:从统一分布的能源,从外部热流从表面和外部物质流来看。通过将内部约束引入系统,我们确定有没有约束的$ \ Mathcal {t} $,发现$ \ Mathcal {t} $对于不受约束的NESS来说是最小的。我们发现所研究的内部能量的形式遵循$ u = u_0*f(j_u)$。在这种情况下,我们讨论了NESS的自然变量,定义了嵌入式能量(对NESS的helmholtz自由能的类似物),并提供其解释。

We study a quantity $\mathcal{T}$ defined as the energy U, stored in non-equilibrium steady states (NESS) over its value in equilibrium $U_0$, $ΔU=U-U_0$ divided by the heat flow $J_{U}$ going out of the system. A recent study suggests that $\mathcal{T}$ is minimized in steady states (Phys.Rev.E.99, 042118 (2019)). We evaluate this hypothesis using an ideal gas system with three methods of energy delivery: from a uniformly distributed energy source, from an external heat flow through the surface, and from an external matter flow. By introducing internal constraints into the system, we determine $\mathcal{T}$ with and without constraints and find that $\mathcal{T}$ is the smallest for unconstrained NESS. We find that the form of the internal energy in the studied NESS follows $U=U_0*f(J_U)$. In this context, we discuss natural variables for NESS, define the embedded energy (an analog of Helmholtz free energy for NESS), and provide its interpretation.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源