论文标题

来自多个来源的无监督域扩展

Unsupervised Domain Expansion from Multiple Sources

论文作者

Zhang, Jing, Li, Wanqing, sheng, Lu, Tang, Chang, Ogunbona, Philip

论文摘要

鉴于从以前的源域中学到的现有系统,希望将系统调整到新域而不访问和忘记某些应用程序中的所有先前域。这个问题称为域扩展。与传统域的适应不同,目标域是由新数据定义的域,在域扩展中,目标域由源域和新域和新域(因此,域扩展)共同形成,并且要学习的标签函数必须用于扩展的域。具体而言,本文提出了一种无监督的多源域扩展(UMSDE)的方法,其中仅可用的源域和未标记的新域数据的预测模型可用。我们建议在不同源模型产生的新域中使用未标记数据的预测类概率来共同减轻域之间的偏见,利用新域中的判别信息,并保留源域中的性能。 VLC,ImageCleF_DA和PACS数据集的实验结果已验证了所提出的方法的有效性。

Given an existing system learned from previous source domains, it is desirable to adapt the system to new domains without accessing and forgetting all the previous domains in some applications. This problem is known as domain expansion. Unlike traditional domain adaptation in which the target domain is the domain defined by new data, in domain expansion the target domain is formed jointly by the source domains and the new domain (hence, domain expansion) and the label function to be learned must work for the expanded domain. Specifically, this paper presents a method for unsupervised multi-source domain expansion (UMSDE) where only the pre-learned models of the source domains and unlabelled new domain data are available. We propose to use the predicted class probability of the unlabelled data in the new domain produced by different source models to jointly mitigate the biases among domains, exploit the discriminative information in the new domain, and preserve the performance in the source domains. Experimental results on the VLCS, ImageCLEF_DA and PACS datasets have verified the effectiveness of the proposed method.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源