论文标题

M $ {}^\ Natural $ -convex函数的压缩 - 标志Matroids and Valued permutohedra

Compression of M${}^\natural$-convex Functions -- Flag Matroids and Valuated Permutohedra

论文作者

Fujishige, Satoru, Hirai, Hiroshi

论文摘要

Murota(1998)和Murota和Shioura(1999)引入了M-Convex功能和M $ {}^\ Natural $ -convex函数作为离散凸功能的概念,这些函数是由于着装和Wenzel(1992)而导致的有价值的矩阵的概括。在本文中,我们考虑了由M $ {}^\ Natural $ -Convex函数的部分卷积定义的新操作,该函数将给定的M $ {}^\ natural $ -convex函数转换为M-Convex函数,我们称之为M $ {}^}^\ natural $ -convex函数。对于有价值的广义型矩阵(特殊的M $ {}^\ Natural $ -Convex函数),压缩功能可引起有价值的置换式螺旋体,并分解有价值的通用型曲Matroid到Flag-Matroid Strips中,每条都与诱导的渗透率的最大线性域相对应。我们通过对MUROTA的离散凸分析来检查Flag-电语条的结构和诱导的置换式体系的细节。

Murota (1998) and Murota and Shioura (1999) introduced concepts of M-convex function and M${}^\natural$-convex function as discrete convex functions, which are generalizations of valuated matroids due to Dress and Wenzel (1992). In the present paper we consider a new operation defined by a convolution of sections of an M${}^\natural$-convex function that transforms the given M${}^\natural$-convex function to an M-convex function, which we call a compression of an M${}^\natural$-convex function. For the class of valuated generalized matroids, which are special M${}^\natural$-convex functions, the compression induces a valuated permutohedron together with a decomposition of the valuated generalized matroid into flag-matroid strips, each corresponding to a maximal linearity domain of the induced valuated permutohedron. We examine the details of the structure of flag-matroid strips and the induced valuated permutohedron by means of discrete convex analysis of Murota.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源