论文标题

Quaternionic Lauricella系统的四个维度的共形相关函数

Conformal Correlation functions in four dimensions from Quaternionic Lauricella system

论文作者

Pal, Aritra, Ray, Koushik

论文摘要

在四个维度中,欧几里得共形性场理论中的相关功能表示为共形组$ sl(2,\ h)$,$ \ h $作为四个季节的字段,在点的配置空间上。这些表示是根据四甲虫系统的四元组获得的。它概括了二维情况,其中$ n $ - 点相关函数是根据lauricella系统解决方案在复杂平面上$ n $点上的$ n $点的解决方案表示的,提供了共形组$ sl(2,\ c)$的表示形式。

Correlation functions in Euclidean conformal field theories in four dimensions are expressed as representations of the conformal group $SL(2,\H)$, $\H$ being the field of quaternions, on the configuration space of points. The representations are obtained in terms of Lauricella system for quaternions. It generalizes the two-dimensional case, wherein the $N$-point correlation function is expressed in terms of solutions of Lauricella system on the configuration space of $N$ points on the complex plane, furnishing representation of the conformal group $SL(2,\C)$.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源