论文标题

通过强化学习的非事物网络整合LEO卫星和无人机中继

Integrating LEO Satellite and UAV Relaying via Reinforcement Learning for Non-Terrestrial Networks

论文作者

Lee, Ju-Hyung, Park, Jihong, Bennis, Mehdi, Ko, Young-Chai

论文摘要

低地球轨道(LEO)卫星的巨型构造有可能与低潜伏期保持远距离通信。将其与新兴的无人驾驶汽车(UAV)辅助非事物网络相结合将是超越5G系统提供大规模三维连通性的破坏解决方案。在本文中,我们通过从轨道星座和移动高空平台(HAP)(例如固定翼无人机)中选择的狮子座卫星研究了两个遥远地面终端之间的数据包的问题。为了最大程度地提高端到端数据速率,应优化卫星关联和HAP位置,这是由于大量轨道卫星和随之而来的随时间变化的网络拓扑而具有挑战性的。我们使用新颖的动作维度降低技术来解决此问题(DRL)。与没有SAT和HAP的直接通信基线相比,模拟结果证实了我们提出的方法的平均数据速率高达5.74倍。

A mega-constellation of low-earth orbit (LEO) satellites has the potential to enable long-range communication with low latency. Integrating this with burgeoning unmanned aerial vehicle (UAV) assisted non-terrestrial networks will be a disruptive solution for beyond 5G systems provisioning large scale three-dimensional connectivity. In this article, we study the problem of forwarding packets between two faraway ground terminals, through an LEO satellite selected from an orbiting constellation and a mobile high-altitude platform (HAP) such as a fixed-wing UAV. To maximize the end-to-end data rate, the satellite association and HAP location should be optimized, which is challenging due to a huge number of orbiting satellites and the resulting time-varying network topology. We tackle this problem using deep reinforcement learning (DRL) with a novel action dimension reduction technique. Simulation results corroborate that our proposed method achieves up to 5.74x higher average data rate compared to a direct communication baseline without SAT and HAP.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源