论文标题

MVIN:学习多览项目以供推荐

MVIN: Learning Multiview Items for Recommendation

论文作者

Tai, Chang-You, Wu, Meng-Ru, Chu, Yun-Wei, Chu, Shao-Yu, Ku, Lun-Wei

论文摘要

研究人员已经开始利用异质知识图(KGS)作为推荐系统中的辅助信息,以减轻寒冷的开始和稀疏问题。但是,使用图形神经网络(GNN)在kg中捕获信息并进一步应用RS仍然存在问题,因为它无法从多个角度看到每个项目的属性。为了解决这些问题,我们提出了一个基于GNN的推荐模型的多视图项目网络(MVIN),该模型通过从用户和实体角度从独特的混合视图中描述项目来提供出色的建议。 Mvin从用户视图和实体视图中学习项目表示形式。从用户视图中,以用户为导向的模块得分和汇总功能,以根据包含用户点击信息的KG实体构建的个性化角度提出建议。从实体视图中,混合层与层的GCN信息进行了对比,以进一步从kg中的内部实体 - 实体相互作用获得全面的特征。我们在三个现实世界数据集上评估MVIN:Movielens-1M(ML-1M),LFM-1B 2015(LFM-1B)和Amazon-Book(AZ-Book)。结果表明,MVIN在这三个数据集上的表现明显优于最先进的方法。此外,从用户视图案例中,我们发现Mvin确实捕获了吸引用户的实体。数字进一步说明,在异质kg中混合层在邻里信息聚集中起着至关重要的作用。

Researchers have begun to utilize heterogeneous knowledge graphs (KGs) as auxiliary information in recommendation systems to mitigate the cold start and sparsity issues. However, utilizing a graph neural network (GNN) to capture information in KG and further apply in RS is still problematic as it is unable to see each item's properties from multiple perspectives. To address these issues, we propose the multi-view item network (MVIN), a GNN-based recommendation model which provides superior recommendations by describing items from a unique mixed view from user and entity angles. MVIN learns item representations from both the user view and the entity view. From the user view, user-oriented modules score and aggregate features to make recommendations from a personalized perspective constructed according to KG entities which incorporates user click information. From the entity view, the mixing layer contrasts layer-wise GCN information to further obtain comprehensive features from internal entity-entity interactions in the KG. We evaluate MVIN on three real-world datasets: MovieLens-1M (ML-1M), LFM-1b 2015 (LFM-1b), and Amazon-Book (AZ-book). Results show that MVIN significantly outperforms state-of-the-art methods on these three datasets. In addition, from user-view cases, we find that MVIN indeed captures entities that attract users. Figures further illustrate that mixing layers in a heterogeneous KG plays a vital role in neighborhood information aggregation.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源