论文标题
公平的政策定位
Fair Policy Targeting
论文作者
论文摘要
针对社会福利计划中个人的干预措施的主要问题之一是歧视:个性化治疗可能会导致跨年龄,性别或种族等敏感属性的差异。本文解决了公平有效的治疗分配规则的设计问题。我们采用第一个的非遗憾视角没有伤害:我们选择了帕累托边境中最公平的分配。我们将优化投入到混合构成线性程序公式中,可以使用现成的算法来解决。我们对估计的政策功能的不公平性和帕累托前沿中的少量样本保证在一般的公平概念下得出了遗憾。最后,我们使用教育经济学的应用来说明我们的方法。
One of the major concerns of targeting interventions on individuals in social welfare programs is discrimination: individualized treatments may induce disparities across sensitive attributes such as age, gender, or race. This paper addresses the question of the design of fair and efficient treatment allocation rules. We adopt the non-maleficence perspective of first do no harm: we select the fairest allocation within the Pareto frontier. We cast the optimization into a mixed-integer linear program formulation, which can be solved using off-the-shelf algorithms. We derive regret bounds on the unfairness of the estimated policy function and small sample guarantees on the Pareto frontier under general notions of fairness. Finally, we illustrate our method using an application from education economics.