论文标题
超对称阳米尔斯理论的扰动线性化
Perturbative linearization of supersymmetric Yang-Mills theory
论文作者
论文摘要
超对称规格的理论的特征在于存在骨磁场(尼古拉图)的转化,以使转化的雅各比的决定因素等于Matthews-Salam-seiler和Faddeev-Popov-Popov的确定性。在耦合常数中,这种转换已将其定为二阶。在本文中,我们将此结果(以及框架本身)扩展到耦合常数中的三阶。概述了从树图中进行的图解方法,旨在将此地图扩展到任意订单。这种形式主义完全绕过了反交易变量的使用,以及有关这些理论的(非)存在分子表述的问题。因此,它提供了对超对称仪表理论的新视角,尤其是无处不在的$ \ Mathcal n {=} \,4 $理论。
Supersymmetric gauge theories are characterized by the existence of a transformation of the bosonic fields (Nicolai map) such that the Jacobi determinant of the transformation equals the product of the Matthews-Salam-Seiler and Faddeev-Popov determinants. This transformation had been worked out to second order in the coupling constant. In this paper, we extend this result (and the framework itself) to third order in the coupling constant. A diagrammatic approach in terms of tree diagrams, aiming to extend this map to arbitrary orders, is outlined. This formalism bypasses entirely the use of anti-commuting variables, as well as issues concerning the (non-)existence of off-shell formulations for these theories. It thus offers a fresh perspective on supersymmetric gauge theories and, in particular, the ubiquitous $\mathcal N{=}\,4$ theory.