论文标题

探索强烈相互作用的无间隙状态:丘比特,配对密度波和波动的超导性

Exploring Strongly Interacting Gapless States: Cuprates, Pair Density Waves, and Fluctuating Superconductivity

论文作者

Dai, Zhehao

论文摘要

我们研究了配对密度波(PDW)和波动PDW的物理特性,并使用它来构建在丘比特高温超导体中强烈相互作用的伪随相互作用的有效理论。在第2章中,我们研究了最简单的PDW状态Fulde-Ferrell状态如何响应事件光。冷凝水的集体运动起着关键作用;规格不变性指导我们取得正确的结果。从第3章到第7章,我们通过考虑量子波动的PDW来构建伪随的金属状态。我们分析了最新的扫描隧道显微镜(STM)在D波超导体的涡旋光环中发现周期8密度波的发现。我们将其放在更广泛的伪PENOMENOLOGY的背景下,并将实验结果与各种PDW驱动模型和电荷密度波(CDW)驱动模型进行比较。我们建议实验以区分这些不同的模型。我们介绍了PDW的Bogoliubov乐队。我们从波动超导性的一般角度讨论了波动的PDW。我们讨论当超导顺序参数波动时,Bogoliubov频带如何发展。我们将理论预测与有关角度分辨光发射光谱(ARPES),红外电导率,DIAMAGNETISM和晶格对称性破坏的现有实验进行了比较。此处介绍的材料基于参考文献[38,40,41]。

We study the physical property of pair density wave (PDW) and fluctuating PDW, and use it to build an effective theory of the strongly interacting pseudogap phase in cuprate high temperature superconductors. In Chapter2, we study how Fulde-Ferrell state, the simplest form of PDW, responds to incident light. The collective motion of the condensate plays a key role; gauge invariance guides us to the correct result. From Chapter 3 to Chapter 7, we construct a pseudogap metallic state by considering quantum fluctuating PDW. We analyze a recent scanning tunneling microscope (STM) discovery of period-8 density waves in the vortex halo of the d-wave superconductor. We put it in the context of the broader pseudogap phenomenology, and compare the experimental results with various PDW-driven models and a charge density wave (CDW) driven model. We propose experiments to distinguish these different models. We present the Bogoliubov bands of PDW. We discuss fluctuating PDW from the general perspective of fluctuating superconductivity. We discuss how Bogoliubov bands evolve when the superconducting order parameter is fluctuating. We compare theoretical predictions with existing experiments on angle-resolved photoemission spectroscopy (ARPES), infrared conductivity, diamagnetism, and lattice symmetry breaking. The material presented here is based on Ref.[38,40,41].

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源