论文标题

Bergman和Cauchy-szegő在域上投影的加权端点边界几乎平滑度

Weighted endpoint bounds for the Bergman and Cauchy-Szegő projections on domains with near minimal smoothness

论文作者

Stockdale, Cody B., Wagner, Nathan A.

论文摘要

我们研究伯格曼投影,$ \ Mathcal {b} $和Cauchy-Szegő投影,$ \ Mathcal {S} $,在具有最小平滑度的有限域上。我们证明$ \ nathcal {b} $具有相对于加权措施的弱型$(1,1)$,假设基础域具有强烈的pseudoconvex,具有$ c^4 $界限,重量且重量满足$ b_1 $的条件,并且满足$ \ \ \ ntive $ c^3 $ c^3 $ c^3 $ c^3 $ c^3 $ c^3 33 健康)状况。我们还以$ \ Mathcal {B} $和$ \ Mathcal {s} $在其各自的设置中以冠冕获得了加权的Kolmogorov和加权的Zygmund不等式。

We study the Bergman projection, $\mathcal{B}$, and the Cauchy-Szegő projection, $\mathcal{S}$, on bounded domains with near minimal smoothness. We prove that $\mathcal{B}$ has the weak-type $(1,1)$ property with respect to weighted measures assuming that the underlying domain is strongly pseudoconvex with $C^4$ boundary and the weight satisfies the $B_1$ condition, and the same property for $\mathcal{S}$ on domains with $C^3$ boundaries and weights satisfying the $A_1$ condition. We also obtain weighted Kolmogorov and weighted Zygmund inequalities for $\mathcal{B}$ and $\mathcal{S}$ in their respective settings as corollaries.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源