论文标题
罗宾分数问题与对称可变生长
Robin fractional problems with symmetric variable growth
论文作者
论文摘要
在本文中,我们研究了分数p(。,。) - 拉普拉斯式,并为该操作员介绍了相应的非局部综合衍生物。我们证明了相应的功能空间的基本属性,并为此类运算符建立了Divergence定理的非本地版本。在本文的第二部分中,我们证明存在相应p(。,。)的弱解 - 罗宾边界问题通过应用变异工具而与签名改变电势的存在。
In this paper we study the fractional p(., .)-Laplacian and we introduce the corresponding nonlocal conormal derivative for this operator. We prove basic properties of the corresponding function space and we establish a nonlocal version of the divergence theorem for such operators. In the second part of this paper, we prove the existence of weak solutions of corresponding p(., .)-Robin boundary problems with sign-changing potentials by applying variational tools.