论文标题

使用域自适应批准化在人类活动识别中的增量实时个性化

Incremental Real-Time Personalization in Human Activity Recognition Using Domain Adaptive Batch Normalization

论文作者

Mazankiewicz, Alan, Böhm, Klemens, Bergés, Mario

论文摘要

来自智能手机加速度计等设备的人类活动识别(HAR)是无处不在的计算中的基本问题。当应用于不属于培训数据的新用户时,基于机器学习的识别模型通常会表现不佳。以前的工作通过将一般识别模型个性化为静态批次设置的新用户的独特运动模式来解决这一挑战。他们需要预先提供目标用户数据。在线环境越具有挑战性的关注较少。没有目标用户的样本可提前可用,但它们依次到达。此外,用户的运动模式可能会随着时间而变化。因此,必须将适应新信息和遗忘的旧信息进行交易。最后,目标用户不必通过标记任何活动来使用识别系统来使用识别系统。我们的工作通过提出一种无监督的在线域适应算法来解决所有这些挑战。分类和个性化都在实时连续和逐步进行。我们的解决方案通过将所有受试者的特征分布(无论是来源还是目标)对齐,在隐藏的神经网络层中起作用。为此,我们将图层的输入标准化,并具有特定于用户的均值和方差统计信息。在培训期间,这些统计数据是根据特定于用户的批量计算的。在在线阶段,对于任何新目标用户,它们的估计值逐渐估计。

Human Activity Recognition (HAR) from devices like smartphone accelerometers is a fundamental problem in ubiquitous computing. Machine learning based recognition models often perform poorly when applied to new users that were not part of the training data. Previous work has addressed this challenge by personalizing general recognition models to the unique motion pattern of a new user in a static batch setting. They require target user data to be available upfront. The more challenging online setting has received less attention. No samples from the target user are available in advance, but they arrive sequentially. Additionally, the motion pattern of users may change over time. Thus, adapting to new and forgetting old information must be traded off. Finally, the target user should not have to do any work to use the recognition system by, say, labeling any activities. Our work addresses all of these challenges by proposing an unsupervised online domain adaptation algorithm. Both classification and personalization happen continuously and incrementally in real time. Our solution works by aligning the feature distributions of all subjects, be they sources or the target, in hidden neural network layers. To this end, we normalize the input of a layer with user-specific mean and variance statistics. During training, these statistics are computed over user-specific batches. In the online phase, they are estimated incrementally for any new target user.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源