论文标题

在极端环境中的人工智能,机器学习和实时智能支持的动态和自我适应系统的设计,在极端环境中,火星殖民中的网络风险

Design of a dynamic and self adapting system, supported with artificial intelligence, machine learning and real time intelligence for predictive cyber risk analytics in extreme environments, cyber risk in the colonisation of Mars

论文作者

Radanliev, Petar, De Roure, David, Page, Kevin, Van Kleek, Max, Santos, Omar, Maddox, La Treall, Burnap, Pete, Anthi, Eirini, Maple, Carsten

论文摘要

多个政府机构和私人组织已为火星殖民做出了承诺。这种殖民化需要复杂的系统和基础设施,在网络攻击的情况下,修复或替换可能非常昂贵。本文调查了深度学习算法,物联网网络安全和风险模型,并建立了数学公式,以确定开发动态和自我适应系统的最佳方法,用于预测性网络风险分析,该系统支持人工智能和机器学习以及边缘计算中的实时智能。本文提出了一种新的数学方法,用于整合认知引擎设计,边缘计算和人工智能以及机器学习以自动化异常检测的概念。该引擎通过应用嵌入在物联网网络边缘的人工智能和机器学习来促进了一步的变化,以提供安全且功能的实时智能,以进行预测性的网络风险分析。这将提高风险分析的能力和有助于创建对部署边缘计算节点以及人工智能和机器学习技术被迁移到Internet外围并将其转移到本地IoT网络时,对边缘计算节点的机会和威胁产生了全面而系统的理解。

Multiple governmental agencies and private organisations have made commitments for the colonisation of Mars. Such colonisation requires complex systems and infrastructure that could be very costly to repair or replace in cases of cyber attacks. This paper surveys deep learning algorithms, IoT cyber security and risk models, and established mathematical formulas to identify the best approach for developing a dynamic and self adapting system for predictive cyber risk analytics supported with Artificial Intelligence and Machine Learning and real time intelligence in edge computing. The paper presents a new mathematical approach for integrating concepts for cognition engine design, edge computing and Artificial Intelligence and Machine Learning to automate anomaly detection. This engine instigates a step change by applying Artificial Intelligence and Machine Learning embedded at the edge of IoT networks, to deliver safe and functional real time intelligence for predictive cyber risk analytics. This will enhance capacities for risk analytics and assists in the creation of a comprehensive and systematic understanding of the opportunities and threats that arise when edge computing nodes are deployed, and when Artificial Intelligence and Machine Learning technologies are migrated to the periphery of the internet and into local IoT networks.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源