论文标题

无穷小量子组是经典流体力学的基础

An Infinitesimal Quantum Group Underlies Classical Fluid Mechanics

论文作者

Rajeev, S. G.

论文摘要

阿诺德(Arnold)表明,理想流体的Euler方程描述了不可压缩载体场的Lie代数中的测量学。我们将表明,螺旋性诱导了将Lie代数分裂为两个各向同性子空间,形成了Manin三重。另一种方式观察,这表明存在一个无穷小的量子组(又称Bi-Algebra)基础经典流体力学。

Arnold showed that the Euler equations of an ideal fluid describe geodesics in the Lie algebra of incompressible vector fields. We will show that helicity induces a splitting of the Lie algebra into two isotropic subspaces, forming a Manin triple. Viewed another way, this shows that there is an infinitesimal quantum group (a.k.a. Lie bi-algebra) underlying classical fluid mechanics.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源