论文标题
原始的非缺陷数量是否必须比其自由基大得多?
Must a primitive non-deficient number have a component not much larger than its radical?
论文作者
论文摘要
令$ n $为原始的非缺陷数字,其中$ n = p_1^{a_1} p_2^{a_2} {a_2} \ cdots p_k^{a_k} $其中$ p_1,p_2 \ cdots p_k $是独特的利润。我们证明存在$ i $,以至于$$ p_i^{a_i+1} <2k(p_1p_2p_3 \ cdots p_k)。
Let $n$ be a primitive non-deficient number where $n=p_1^{a_1}p_2^{a_2} \cdots p_k^{a_k}$ where $p_1, p_2 \cdots p_k$ are distinct primes. We prove that there exists an $i$ such that $$p_i^{a_i+1} < 2k(p_1p_2p_3\cdots p_k).$$ We conjecture that in fact one can always find an $i$ such that ${p_i}^{a_i+1} < p_1p_2p_3\cdots p_k$.