论文标题
夹带具有最小刺激电荷的相互作用神经元网络
Entrainment of a network of interacting neurons with minimum stimulating charge
论文作者
论文摘要
周期性脉搏刺激通常用于研究神经系统的功能并抵消与疾病相关的神经元活性,例如集体周期性神经元振荡。在没有损害脑组织的情况下,对神经元动力学的有效控制是研究和临床目的的关键。我们在这里适应了最近针对单个神经元开发的最低电荷控制理论,该理论具有相互作用的神经元网络,该网络表现出集体周期性振荡。我们提出了最佳波形的一般表达,该表达式为刺激频率提供了刺激频率的夹带,并具有刺激电流的最低绝对值。与单个神经元一样,最佳波形是爆炸类型的,但是它的参数现在由整个网络的有效相位响应曲线的参数确定,而不是单个神经元的参数。理论结果通过三个具体示例证实:两个带有突触和电气耦合的Fitzhugh-Nagumo神经元的小规模网络,以及一个大型突触耦合二次集成和传火神经元的大规模网络。
Periodic pulse train stimulation is generically used to study the function of the nervous system and to counteract disease-related neuronal activity, e.g., collective periodic neuronal oscillations. The efficient control of neuronal dynamics without compromising brain tissue is key to research and clinical purposes. We here adapt the minimum charge control theory, recently developed for a single neuron, to a network of interacting neurons exhibiting collective periodic oscillations. We present a general expression for the optimal waveform, which provides an entrainment of a neural network to the stimulation frequency with a minimum absolute value of the stimulating current. As in the case of a single neuron, the optimal waveform is of bang-off-bang type, but its parameters are now determined by the parameters of the effective phase response curve of the entire network, rather than of a single neuron. The theoretical results are confirmed by three specific examples: two small-scale networks of FitzHugh-Nagumo neurons with synaptic and electric couplings, as well as a large-scale network of synaptically coupled quadratic integrate-and-fire neurons.