论文标题

用变异自动编码器脱并列星系:一种联合多频段,多仪器方法

Deblending galaxies with Variational Autoencoders: a joint multi-band, multi-instrument approach

论文作者

Arcelin, Bastien, Doux, Cyrille, Aubourg, Eric, Roucelle, Cécile, Collaboration, The LSST Dark Energy Science

论文摘要

星系的混合在弱透镜研究的系统误差预算中具有重大贡献,影响了光度和形状测量,尤其是在地面,深层的光度星系调查中,例如Rubin Observatory Persinator对时空的遗产调查(LSST)。现有的DeBlenders主要依赖于星系剖面的分析建模,并且缺乏灵活但准确的模型。我们建议使用基于深层神经网络的生成模型,即变异自动编码器(VAE),直接从数据中学习概率模型。我们在居中的孤立星系的图像上训练VAE,作为先前的第二个vae样神经网络,我们将其重复使用,负责融合融合星系。我们在模拟图像上训练网络,包括六个LSST带通滤波器以及Euclid卫星的可见和近红外带,因为我们的方法自然而然地通用了多个频段,并且可以合并来自多个乐器的数据。在大多数情况下,我们会在椭圆度和$ r $ band的幅度和$ \ pm {0.05} $之间获得中位数重建错误,而在最佳配置中混合对象的椭圆度多性偏置为1.6%。我们还研究了体面的影响,并证明了鲁棒的方法。此方法仅需要每个目标星系的大致中心,但是对周围物体数量的数量没有假设,指出我们要离开的迭代检测/脱核过程。最后,我们讨论了有关实际数据培训的未来挑战,并在应用转移学习时获得令人鼓舞的结果。我们的代码可在GitHub(https://github.com/lsstdesc/deblendervae)上公开获得。

Blending of galaxies has a major contribution in the systematic error budget of weak lensing studies, affecting photometric and shape measurements, particularly for ground-based, deep, photometric galaxy surveys, such as the Rubin Observatory Legacy Survey of Space and Time (LSST). Existing deblenders mostly rely on analytic modelling of galaxy profiles and suffer from the lack of flexible yet accurate models. We propose to use generative models based on deep neural networks, namely variational autoencoders (VAE), to learn probabilistic models directly from data. We train a VAE on images of centred, isolated galaxies, which we reuse, as a prior, in a second VAE-like neural network in charge of deblending galaxies. We train our networks on simulated images including six LSST bandpass filters and the visible and near-infrared bands of the Euclid satellite, as our method naturally generalises to multiple bands and can incorporate data from multiple instruments. We obtain median reconstruction errors on ellipticities and $r$-band magnitude between $\pm{0.01}$ and $\pm{0.05}$ respectively in most cases, and ellipticity multiplicative bias of 1.6% for blended objects in the optimal configuration. We also study the impact of decentring and prove the method to be robust. This method only requires the approximate centre of each target galaxy, but no assumptions about the number of surrounding objects, pointing to an iterative detection/deblending procedure we leave for future work. Finally, we discuss future challenges about training on real data and obtain encouraging results when applying transfer learning. Our code is publicly available on GitHub (https://github.com/LSSTDESC/DeblenderVAE).

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源