论文标题
关于均匀空间产品的不同轨迹
Divergent trajectories on products of homogeneous spaces
论文作者
论文摘要
在本文中,我们确定了一组点的Hausdorff尺寸,并在某些均匀空间的乘积上具有不同的轨迹。对于产品空间中的因素,允许对流量进行加权。结果源自其在二芬太汀近似中的对应物。在此过程中,我们引入了一个共同奇异基质元素的概念,并将单数矩阵的尺寸公式扩展到此类基质元素。
In this paper, we determine the Hausdorff dimension of the set of points with divergent trajectories on the product of certain homogeneous spaces. The flow is allowed to be weighted with respect to the factors in the product space. The result is derived from its counterpart in Diophantine approximation. In doing this, we introduce a notion of jointly singular matrix tuples, and extend the dimension formula for singular matrices to such matrix tuples.