论文标题

星光加热的原球磁盘中的气体和灰尘动态

Gas and dust dynamics in starlight-heated protoplanetary disks

论文作者

Flock, Mario, Turner, Neal J., Nelson, Richard P., Lyra, Wladimir, Manger, Natascha, Klahr, Hubert

论文摘要

原月球磁盘中电离状态的理论模型表明,气体和磁场之间存在低电离和弱耦合的大面积。在这种制度中,流体动力学不稳定性可能变得重要。在这项工作中,我们研究了在垂直剪切不稳定性(VSI)的影响下典型的T牛里系统的气体和灰尘结构和动力学。我们使用全局3D辐射流体动力学模拟,涵盖所有$ 360^\ circ $ circ $ circ $均具有0.1和1mm尺寸的嵌入式颗粒,以400个轨道进化。恒星辐照加热包括0.1至10- $ $ M尺寸的灰尘的不透明。饱和的VSI湍流产生的应力与压力比为$α\ simeq 10^{ - 4} $。 $α$的值在恒星的30〜AU中最低,在恒星的30 〜AU中,相对于轨道时期,热弛豫的速度较慢,并且接近切断VSI的速率。 $α$从20到30 au的上升会导致35〜AU的表面密度倾角,从而导致Rossby波浪不稳定性和固定的,长寿命的涡流产生,横跨半径约为4〜AU,而Auimuth中的40〜AU。我们的结果证实了先前的发现,MM大小的晶粒被VSI强烈垂直混合。 1mm晶粒的比例高度纵横比确定为0.037,远高于$ h/r = 0.007 $从HL〜TAU系统的毫米波观测获得的值。通过非理想的MHD模型,测得的纵横比可以更好地拟合。在我们的VSI湍流模型中,MM晶粒径向向内漂移,许多晶粒被困在涡流内。湍流诱导MM晶粒的速度分散$ \ sim 12 $ 〜m/s,表明谷物谷物碰撞可能导致碎片化。

Theoretical models of the ionization state in protoplanetary disks suggest the existence of large areas with low ionization and weak coupling between the gas and magnetic fields. In this regime hydrodynamical instabilities may become important. In this work we investigate the gas and dust structure and dynamics for a typical T Tauri system under the influence of the vertical shear instability (VSI). We use global 3D radiation hydrodynamics simulations covering all $360^\circ$ of azimuth with embedded particles of 0.1 and 1mm size, evolved for 400 orbits. Stellar irradiation heating is included with opacities for 0.1- to 10-$μ$m-sized dust. Saturated VSI turbulence produces a stress-to-pressure ratio of $α\simeq 10^{-4}$. The value of $α$ is lowest within 30~au of the star, where thermal relaxation is slower relative to the orbital period and approaches the rate below which VSI is cut off. The rise in $α$ from 20 to 30~au causes a dip in the surface density near 35~au, leading to Rossby wave instability and the generation of a stationary, long-lived vortex spanning about 4~au in radius and 40~au in azimuth. Our results confirm previous findings that mm size grains are strongly vertically mixed by the VSI. The scale height aspect ratio for 1mm grains is determined to be 0.037, much higher than the value $H/r=0.007$ obtained from millimeter-wave observations of the HL~Tau system. The measured aspect ratio is better fit by non-ideal MHD models. In our VSI turbulence model, the mm grains drift radially inwards and many are trapped and concentrated inside the vortex. The turbulence induces a velocity dispersion of $\sim 12$~m/s for the mm grains, indicating that grain-grain collisions could lead to fragmentation.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源