论文标题

关节椎骨检测和断裂严重程度定量的关键点定位

Keypoints Localization for Joint Vertebra Detection and Fracture Severity Quantification

论文作者

Pisov, Maxim, Kondratenko, Vladimir, Zakharov, Alexey, Petraikin, Alexey, Gombolevskiy, Victor, Morozov, Sergey, Belyaev, Mikhail

论文摘要

椎体压缩骨折是骨质疏松症的可靠早期迹象。尽管这些裂缝在计算机断层扫描(CT)图像上可见,但放射线医生在临床环境中经常会错过它们。关于椎骨骨折分类方法的先前研究证明了其可靠的质量;但是,现有的方法提供了难以释放的输出,有时无法处理严重异常的病例,例如高度病理椎骨或脊柱侧弯。我们提出了一种新的两步算法,以将椎骨定位在3D CT图像中,然后同时检测单个椎骨并量化2D中的裂缝。我们使用简单的基于6键盘点的注释方案来训练神经网络,以进行两个步骤,这与当前的医学建议完全相对应。我们的算法没有排除标准,可以在单个GPU上2秒内处理3D CT,并提供直观且可验证的输出。该方法方法是专家级的性能,并证明了椎骨3D定位的最新结果(平均误差为1 mm),椎骨2D检测(精度为0.99,召回为1)和断裂识别(患者水平的ROC AUC为0.93)。

Vertebral body compression fractures are reliable early signs of osteoporosis. Though these fractures are visible on Computed Tomography (CT) images, they are frequently missed by radiologists in clinical settings. Prior research on automatic methods of vertebral fracture classification proves its reliable quality; however, existing methods provide hard-to-interpret outputs and sometimes fail to process cases with severe abnormalities such as highly pathological vertebrae or scoliosis. We propose a new two-step algorithm to localize the vertebral column in 3D CT images and then to simultaneously detect individual vertebrae and quantify fractures in 2D. We train neural networks for both steps using a simple 6-keypoints based annotation scheme, which corresponds precisely to current medical recommendation. Our algorithm has no exclusion criteria, processes 3D CT in 2 seconds on a single GPU, and provides an intuitive and verifiable output. The method approaches expert-level performance and demonstrates state-of-the-art results in vertebrae 3D localization (the average error is 1 mm), vertebrae 2D detection (precision is 0.99, recall is 1), and fracture identification (ROC AUC at the patient level is 0.93).

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源