论文标题
$ \ {0,1 \} $ - 三角形矩阵和斐波那契号的组倒置
Group inverses of $\{0,1\}$-triangular matrices and Fibonacci numbers
论文作者
论文摘要
数字$ s $是$ n \ times n,(n \ geq 3)$ n \ geq 3)$上三角矩阵的输入的总和,该矩阵具有集合$ \ {0,1 \} $的条目,并且仅当$ s $是$ s $是一个integer是一个$ 2-f_ {n-1} $ 2+f_ ther 数字。提出了以上足够条件对单数,可逆矩阵的概括。
A number $s$ is the sum of the entries of the inverse of an $n \times n, (n \geq 3)$ upper triangular matrix with entries from the set $\{0, 1\}$ if and only if $s$ is an integer lying between $2-F_{n-1}$ and $2+F_{n-1}$, where $F_n$ is the $n$th Fibonacci number. A generalization of the sufficient condition above to singular, group invertible matrices is presented.