论文标题

分级$ k $ - 理论和$ k $ - 相对cuntz-pimsner代数和图形$ c^*$ - 代数 - 代数

Graded $K$-theory and $K$-homology of relative Cuntz-Pimsner algebras and graph $C^*$-algebras

论文作者

Patterson, Quinn, Sierakowski, Adam, Sims, Aidan, Taylor, Jonathan

论文摘要

我们以$ kk $的理论建立精确的序列,用于与非化度$ c^*$通讯相关的分级相对cuntz-pimsner代数。我们用它来计算针对$ \ {0,1 \} $引起的等级的定向图的相对cuntz-krieger代数的分级$ k $ - 理论和$ k $ - $ k $ - $ k $ - $ k $ - $ k $ - $ k $ - 理论。

We establish exact sequences in $KK$-theory for graded relative Cuntz-Pimsner algebras associated to nondegenerate $C^*$-correspondences. We use this to calculate the graded $K$-theory and $K$-homology of relative Cuntz-Krieger algebras of directed graphs for gradings induced by $\{0,1\}$-valued labellings of their edge sets.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源