论文标题

用于隐私节点分类的垂直联合图形神经网络

Vertically Federated Graph Neural Network for Privacy-Preserving Node Classification

论文作者

Chen, Chaochao, Zhou, Jun, Zheng, Longfei, Wu, Huiwen, Lyu, Lingjuan, Wu, Jia, Wu, Bingzhe, Liu, Ziqi, Wang, Li, Zheng, Xiaolin

论文摘要

最近,图形神经网络(GNN)在图形数据上的各种现实世界任务中取得了显着进展,包括节点特征和不同节点之间的相邻信息。高性能GNN模型始终取决于图形中的丰富功能和完整的边缘信息。但是,在实践中,不同的数据持有人可能会隔离此类信息,这是所谓的数据隔离问题。为了解决这个问题,在本文中,我们提出了VFGNN,这是一个联合的GNN学习范式,用于隐私保护节点分类任务,在数据垂直分区的设置下,可以将其推广到现有的GNN模型。具体来说,我们将计算图分为两个部分。我们将私人数据(即功能,边缘和标签)保留在数据持有人上的相关计算,并将其余的计算委托给半honest服务器。我们还建议应用差异隐私,以防止服务器潜在的信息泄漏。我们对三个基准进行实验,结果证明了VFGNN的有效性。

Recently, Graph Neural Network (GNN) has achieved remarkable progresses in various real-world tasks on graph data, consisting of node features and the adjacent information between different nodes. High-performance GNN models always depend on both rich features and complete edge information in graph. However, such information could possibly be isolated by different data holders in practice, which is the so-called data isolation problem. To solve this problem, in this paper, we propose VFGNN, a federated GNN learning paradigm for privacy-preserving node classification task under data vertically partitioned setting, which can be generalized to existing GNN models. Specifically, we split the computation graph into two parts. We leave the private data (i.e., features, edges, and labels) related computations on data holders, and delegate the rest of computations to a semi-honest server. We also propose to apply differential privacy to prevent potential information leakage from the server. We conduct experiments on three benchmarks and the results demonstrate the effectiveness of VFGNN.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源