论文标题

几何三角形和高度扭曲的链接

Geometric triangulations and highly twisted links

论文作者

Ham, Sophie L., Purcell, Jessica S.

论文摘要

据推测,每个cus的双曲线3型脉络膜都接受了几何三角测量,即将其分解为正体积理想的双曲线四面体。在这里,我们表明,足够高度扭曲的结承认了几何三角剖分。此外,通过扩展Gueritaud和Schleimer的工作,我们还为无限的示例家庭提供了此结果的量化版本。

It is conjectured that every cusped hyperbolic 3-manifold admits a geometric triangulation, i.e. it is decomposed into positive volume ideal hyperbolic tetrahedra. Here, we show that sufficiently highly twisted knots admit a geometric triangulation. In addition, by extending work of Gueritaud and Schleimer, we also give quantified versions of this result for infinite families of examples.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源