论文标题
具有带状电子状态的有限二维量子点阵列的热电特性
Thermoelectric properties of finite two-dimensional quantum dot arrays with band-like electronic states
论文作者
论文摘要
热力($ PF = S^2G_E $)取决于Seebeck系数($ S $)和电子电导($ G_E $)。 $ g_e $的增强将不可避免地抑制$ s $,因为它们密切相关。结果,$ PF $的优化非常困难。在这里,我们从理论上研究了二维量子点(QD)阵列的热电特性,并用电极注入了载体。谐振隧道程序中2D QD阵列的洛伦兹人数满足了Wiedemann-Franz法律,该法律确认了微型班的形成。当迷你班中心远离电极的费米水平时,电子传输在热辅助隧道过程(TATP)中。在这个制度中,可以同时发生类似乐队的$ g_e $和类似原子的$ s $的情况。我们已经证明,随着电子状态数量越来越多的$ g_e $增强不会抑制TATP的$ s $。
The thermal power ($PF=S^2G_e$) depends on the Seebeck coefficient ($S$) and electron conductance ($G_e$). The enhancement of $G_e$ will unavoidably suppress $S$ because they are closely related. As a consequence, the optimization of $PF$ is extremely difficult. Here, we theoretically investigated the thermoelectric properties of two-dimensional quantum dot (QD) arrays with carriers injected from electrodes. The Lorenz number of 2D QD arrays in the resonant tunneling procedure satisfies the Wiedemann-Franz law, which confirms the formation of minibands. When the miniband center is far away from the Fermi level of the electrodes, the electron transport is in the thermionic-assisted tunneling procedure (TATP). In this regime, $G_e$ in band-like situation and $S$ in atom-like situation can happen simultaneously. We have demonstrated that the enhancement of $G_e$ with an increasing number of electronic states will not suppress $S$ in the TATP.