论文标题

提取中子星的源特性 - 带重力波的黑洞二进制的统计和系统不确定性

Statistical and systematic uncertainties in extracting the source properties of neutron star - black hole binaries with gravitational waves

论文作者

Huang, Yiwen, Haster, Carl-Johan, Vitale, Salvatore, Varma, Vijay, Foucart, Francois, Biscoveanu, Sylvia

论文摘要

由中子星黑洞合并发出的引力波编码中子星的关键特性 - 例如它们的大小,最大质量和旋转 - 以及黑洞。但是,物质的存在和高质量比使这些系统从这些系统中产生的长而准确的波形与数值相对性无关,并且由于波形建模而导致的系统不确定性并不了解。我们通过与SPEC代码产生的数值相对性波形与最近的数值相对性替代NRHYBSUR3DQ8TIDAL杂交数字相对性波形来模拟中子星黑洞合并的重力波。使用一系列可用波形家族对这些信号进行分析,并报告了统计和系统错误。我们发现,在30个网络信号噪声比(SNR)下,统计不确定性通常大于系统偏移,而在SNR为70的SNR中,两者变得可比。单个黑洞和中子恒星质量以及质量比通常非常精确地测量,尽管在高SNR时并不总是准确地测量。在30的SNR中,中子恒星潮汐变形性只能从上方结合,而对于较大的来源,它可以测量并从零开始。我们的模拟中的所有中子星都是非旋转的,但是在任何情况下,我们都可以限制中子星旋转的小于$ \ sim0.4 $(90%可靠的间隔)。波形家族的后期灵感专门针对中子星黑洞信号进行了调整,通常会产生源参数最准确的表征。它们的测量值与使用对二进制中子星的波形家族获得的那些张力,即使是质量比可能与二进制中子恒星和中子恒星黑洞合并相关的质量比。

Gravitational waves emitted by neutron star black hole mergers encode key properties of neutron stars - such as their size, maximum mass and spins - and black holes. However, the presence of matter and the high mass ratio makes generating long and accurate waveforms from these systems hard to do with numerical relativity, and not much is known about systematic uncertainties due to waveform modeling. We simulate gravitational waves from neutron star black hole mergers by hybridizing numerical relativity waveforms produced with the SpEC code with a recent numerical relativity surrogate NRHybSur3dq8Tidal. These signals are analyzed using a range of available waveform families, and statistical and systematic errors are reported. We find that at a network signal-to-noise ratio (SNR) of 30, statistical uncertainties are usually larger than systematic offsets, while at an SNR of 70 the two become comparable. The individual black hole and neutron star masses, as well as the mass ratios, are typically measured very precisely, though not always accurately at high SNR. At a SNR of 30 the neutron star tidal deformability can only be bound from above, while for louder sources it can be measured and constrained away from zero. All neutron stars in our simulations are non-spinning, but in no case we can constrain the neutron star spin to be smaller than $\sim0.4$ (90% credible interval). Waveform families whose late inspiral has been tuned specifically for neutron star black hole signals typically yield the most accurate characterization of the source parameters. Their measurements are in tension with those obtained using waveform families tuned against binary neutron stars, even for mass ratios that could be relevant for both binary neutron stars and neutron star black holes mergers.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源