论文标题
满足Zamolodchikov方程的非交通性双性地图和Desargues Lattices
Non-commutative bi-rational maps satisfying Zamolodchikov equation, and Desargues lattices
论文作者
论文摘要
我们提出了功能性Zamolodchikov四面体方程的新解,该方程在完全非交通变量中的Birational图方面。所有地图源自Desargues Lattices,这些晶格可为非亚伯Hirota-Miwa系统提供几何实现。第一张地图是使用原始的Hirota的量规来得出的,以解决相应的线性问题,第二个地图是从其仿射(非同质性)描述中得出的。我们还提供了对本地杨巴克斯特方程方法中地图的解释。我们将第二个地图的分解分解为两个简单的地图,如我们所示,它们满足了五边形条件。我们还提供了五边形图之间匹配的十月条件的几何含义。均匀坐标中Desargues晶格的通用描述允许定义Zamolodchikov方程的另一个解决方案,但具有功能参数,应以特定方式调整。它的超局部还原产生了具有Zamolodchikov属性的Birational量子图(带有两个中心参数),该图可以保留Weyl换向关系。在经典的限制下,我们的构造提供了满足Zamolodchikov条件的相应泊松图。
We present new solutions of the functional Zamolodchikov tetrahedron equation in terms of birational maps in totally non-commutative variables. All the maps originate from Desargues lattices, which provide geometric realization of solutions to the non-Abelian Hirota-Miwa system. The first map is derived using the original Hirota's gauge for the corresponding linear problem, and the second one from its affine (non-homogeneous) description. We provide also an interpretation of the maps within the local Yang-Baxter equation approach. We exploit decomposition of the second map into two simpler maps which, as we show, satisfy the pentagonal condition. We provide also geometric meaning of the matching ten-term condition between the pentagonal maps. The generic description of Desargues lattices in homogeneous coordinates allows to define another solution of the Zamolodchikov equation, but with functional parameter which should be adjusted in a particular way. Its ultra-local reduction produces a birational quantum map (with two central parameters) with Zamolodchikov property, which preserves Weyl commutation relations. In the classical limit our construction gives the corresponding Poisson map satisfying the Zamolodchikov condition.