论文标题

感知系统的监视和诊断性

Monitoring and Diagnosability of Perception Systems

论文作者

Antonante, Pasquale, Spivak, David I., Carlone, Luca

论文摘要

感知是机器人技术和自动驾驶系统(例如自动驾驶汽车)高融合应用的关键组成部分。在这些应用中,感知系统的失败可能会使人类生命处于危险之中,并且这些技术的广泛采用依赖于方法,以确保和监控安全操作以及检测和减轻失败。尽管感知系统的重要性至关重要,但目前尚无系统级监视的正式方法。在这项工作中,我们提出了一个数学模型,用于运行时监测和检测感知系统的故障检测。为了实现这一目标,我们与有关多处理器系统的自我诊断性的文献建立了联系,并将其推广到(i)考虑具有异质输出的模块,以及(ii)为问题添加时间维度,这对于模拟模块随时间相互作用的现实感知系统至关重要。这种贡献导致了一种图理论方法,鉴于感知系统,该方法能够在运行时检测故障,并允许计算可检测到的故障模块数量的上限。我们的第二个贡献是表明,可以用Topos理论的语言优雅地描述了所提出的监视方法,该方法允许在任意时间间隔上配方诊断性。

Perception is a critical component of high-integrity applications of robotics and autonomous systems, such as self-driving cars. In these applications, failure of perception systems may put human life at risk, and a broad adoption of these technologies relies on the development of methodologies to guarantee and monitor safe operation as well as detect and mitigate failures. Despite the paramount importance of perception systems, currently there is no formal approach for system-level monitoring. In this work, we propose a mathematical model for runtime monitoring and fault detection of perception systems. Towards this goal, we draw connections with the literature on self-diagnosability for multiprocessor systems, and generalize it to (i) account for modules with heterogeneous outputs, and (ii) add a temporal dimension to the problem, which is crucial to model realistic perception systems where modules interact over time. This contribution results in a graph-theoretic approach that, given a perception system, is able to detect faults at runtime and allows computing an upper-bound on the number of faulty modules that can be detected. Our second contribution is to show that the proposed monitoring approach can be elegantly described with the language of topos theory, which allows formulating diagnosability over arbitrary time intervals.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源