论文标题

dabkowski-sahi不变式和$ 4 $ - moves链接

The Dabkowski-Sahi invariant and $4$-moves for links

论文作者

Miyazawa, Haruko A., Wada, Kodai, Yasuhara, Akira

论文摘要

达布科夫斯基(Dabkowski)和萨希(Sahi)定义了$ 3 $ -sphere中的链接的不变性,该链接保留在$ 4 $ -Moves以下。这个不变是该链接补充的基本组的商。通常很难区分给定链接的dabkowski-sahi不变性。在本文中,我们为链接的dabkowski-sahi不变性与相应的琐碎链接的同构存在提供了必要条件。使用这种条件,我们为链接提供了实用的障碍,使其琐碎的链接最高为$ 4 $。

Dabkowski and Sahi defined an invariant of a link in the $3$-sphere, which is preserved under $4$-moves. This invariant is a quotient of the fundamental group of the complement of the link. It is generally difficult to distinguish the Dabkowski-Sahi invariants of given links. In this paper, we give a necessary condition for the existence of an isomorphism between the Dabkowski-Sahi invariant of a link and that of the corresponding trivial link. Using this condition, we provide a practical obstruction to a link to be trivial up to $4$-moves.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源