论文标题
随机分辨率的身份辅助场量子蒙特卡洛:缩放缩放而没有开销
Stochastic Resolution-of-the-Identity Auxiliary-Field Quantum Monte Carlo: Scaling Reduction without Overhead
论文作者
论文摘要
我们探索使用随机分辨率(SRI)与无量辅助尺寸量子蒙特卡洛(PH-AFQMC)方法的使用。 SRI与pH-AFQMC中现有的四种局部能量评估策略结合在一起,即(1)半旋转电子排斥积分张量(HR),(2)Cholesky分解(CD),(3)张量张量超响应(THC),或(THC)或(4)低rank分支(4)低率分支(LR)。我们证明,HR-SRI无法减少缩放,CD-SRI量表将$ \ MATHCAL O(n^3)$,而THC-SRI和LR-SRI量表则为$ \ Mathcal O(N^2)$,尽管具有潜在的大型预制器。此外,与SRI一起使用CD中的Walker特定的额外记忆要求从$ \ Mathcal O(n^3)$(n^3)$(n^3)$(n^3)$(n^3)$(n^3)$(n^2)$,而基于SRI的THC和LR算法则导致$ \ Mathcal O(n^2)$(n^2)$(n^2)$(n^2)$ \ $ \ nathcal o(n)$(n)$(n)$(n)$(n)。基于一维氢链和水簇的数值结果,我们证明,随着使用差异技术的使用,CD-SRI可实现立方缩放{\ IT而无需开销}。特别是,我们找到研究的系统标准CD的缩放为$ \ MATHCAL O(n^{3-4})$,而对于CD-SRI,它将减少为$ \ MATHCAL O(N^{2-3})$。一旦达到了内存瓶颈,我们预计由于其二次缩放记忆要求及其对局部能量评估的二次缩放,因此THC-SRI和LR-SRI将成为首选方法(具有潜在的大型预制剂)。此处开发的理论框架应促进以前难以或不可能使用标准计算资源执行的大规模pH-AFQMC应用程序。
We explore the use of the stochastic resolution-of-the-identity (sRI) with the phaseless auxiliary-field quantum Monte Carlo (ph-AFQMC) method. sRI is combined with four existing local energy evaluation strategies in ph-AFQMC, namely (1) the half-rotated electron repulsion integral tensor (HR), (2) Cholesky decomposition (CD), (3) tensor hypercontraction (THC), or (4) low-rank factorization (LR). We demonstrate that HR-sRI achieves no scaling reduction, CD-sRI scales as $\mathcal O(N^3)$, and THC-sRI and LR-sRI scale as $\mathcal O(N^2)$, albeit with a potentially large prefactor. Furthermore, the walker-specific extra memory requirement in CD is reduced from $\mathcal O(N^3)$ to $\mathcal O(N^2)$ with sRI, while sRI-based THC and LR algorithms lead to a reduction from $\mathcal O(N^2)$ extra memory to $\mathcal O(N)$. Based on numerical results for one-dimensional hydrogen chains and water clusters, we demonstrated that, along with the use of a variance reduction technique, CD-sRI achieves cubic-scaling {\it without overhead}. In particular, we find for the systems studied the observed scaling of standard CD is $\mathcal O(N^{3-4})$ while for CD-sRI it is reduced to $\mathcal O(N^{2-3})$. Once a memory bottleneck is reached, we expect THC-sRI and LR-sRI to be preferred methods due to their quadratic-scaling memory requirements and their quadratic-scaling of the local energy evaluation (with a potentially large prefactor). The theoretical framework developed here should facilitate large-scale ph-AFQMC applications that were previously difficult or impossible to carry out with standard computational resources.