论文标题

Schwarzschild-rindler-anti-de保姆中的静态球形流体壳的存在和稳定性

Existence and Stability of Static Spherical Fluid Shells in a Schwarzschild-Rindler-anti-de Sitter Metric

论文作者

Alestas, G., Kraniotis, G. V., Perivolaropoulos, L.

论文摘要

We demonstrate the existence of static stable spherical fluid shells in the Schwarzschild-Rindler-anti-de Sitter (SRAdS) spacetime where $ds^2 = f(r)dt^{2} -\frac{dr^{2}}{f(r)}-r^{2}(dθ^2 +\sin ^2 θdϕ^2)$ with $ f(r)= 1 - \ frac {2gm} {r} + 2 b r- \fracλ{3} r^2 $。这是众所周知的静态几何形状的替代方法,在该几何形状中,由于内部de de Sitter空间的排斥力与外部Schwarzschild时空的吸引力相结合,因此稳定性出现。在Srads时空中,导致外壳稳定性的排斥来自负rindler术语,而Schwarzschild和Anti-De保姆项很有吸引力。我们证明了三个状态外壳流体方程的这种稳定的球形外壳:真空外壳($ p =-σ$),硬物质壳($ p =σ$)和灰尘壳($ p = 0 $),其中$ p $是壳压力,$σ$是壳表面密度。我们还确定了在每种情况下需要满足壳稳定性需要满足的度量参数条件。 SRADS时空中的真空稳定壳溶液与两位作者先前的研究一致,这些作者证明了SFARDS SPACETIME中存在SF稳定的球形标量场域壁。

We demonstrate the existence of static stable spherical fluid shells in the Schwarzschild-Rindler-anti-de Sitter (SRAdS) spacetime where $ds^2 = f(r)dt^{2} -\frac{dr^{2}}{f(r)}-r^{2}(dθ^2 +\sin ^2 θdϕ^2)$ with $f(r) = 1 -\frac{2Gm}{r} + 2 b r -\fracΛ{3}r^2$. This is an alternative to the well known gravastar geometry where the stability emerges due to the combination of the repulsive forces of the interior de Sitter space with the attractive forces of the exterior Schwarzschild spacetime. In the SRAdS spacetime the repulsion that leads to stability of the shell comes from a negative Rindler term while the Schwarzschild and anti-de Sitter terms are attractive. We demonstrate the existence of such stable spherical shells for three shell fluid equations of state: vacuum shell ($p=-σ$), stiff matter shell ($p=σ$) and dust shell ($p=0$) where $p$ is the shell pressure and $σ$ is the shell surface density. We also identify the metric parameter conditions that need to be satisfied for shell stability in each case. The vacuum stable shell solution in the SRAdS spacetime is consistent with previous studies by two of the authors that demonstrated the existence sf stable spherical scalar field domain walls in the SRAdS spacetime.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源