论文标题
几乎表示代数和量化
Almost representations of algebras and quantization
论文作者
论文摘要
我们介绍了几乎是代数和量子托里的表示形式的概念,并建立了ULAM稳定性现象:每个不可减至的几乎表示几乎表示几乎都接近真正的不可约代表。作为一种应用,我们证明了二维球体和二维圆环的几何量化在半古典限制中是偶联的,直到一个小误差。
We introduce the notion of almost representations of Lie algebras and quantum tori, and establish an Ulam-stability type phenomenon: every irreducible almost representation is close to a genuine irreducible representation. As an application, we prove that geometric quantizations of the two-dimensional sphere and the two-dimensional torus are conjugate in the semi-classical limit up to a small error.