论文标题

由自动安排构建的XRD图案的特征空间

Feature space of XRD patterns constructed by auto-encorder

论文作者

Utimula, Keishu, Yano, Masao, Kimoto, Hiroyuki, Hongo, Kenta, Nakano, Kousuke, Maezono, Ryo

论文摘要

自然的期望是,只有主要的峰(并非全部)才能为XRD模式的表征做出重要贡献。我们开发了一种方案,该方案可以通过使用自动编码器技术来构造XRD峰模式的特征空间在何种程度上恢复哪些峰。单个XRD模式被投影到使用该方法构建的二维特征空间中的单个点上。如果当掩盖峰值的峰值时,该点显着移动,那么我们可以说峰与空间上点表示的表征相关。这样,我们可以定量地制定相关性。通过使用该方案,我们实际上发现了具有显着峰强度但相关性低的峰值的结构表征。物理观点(例如来自同一平面索引的高阶峰)不容易解释峰,这是机器学习的力量的启发式发现。

It would be a natural expectation that only major peaks, not all of them, would make an important contribution to the characterization of the XRD pattern. We developed a scheme that can identify which peaks are relavant to what extent by using auto-encoder technique to construct a feature space for the XRD peak patterns. Individual XRD patterns are projected onto a single point in the two-dimensional feature space constructed using the method. If the point is significantly shifted when a peak of interest is masked, then we can say the peak is relevant for the characterization represented by the point on the space. In this way, we can formulate the relevancy quantitatively. By using this scheme, we actually found such a peak with a significant peak intensity but low relevancy in the characterization of the structure. The peak is not easily explained by the physical viewpoint such as the higher-order peaks from the same plane index, being a heuristic finding by the power of machine-learning.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源