论文标题

针对领域适应的歧视性积极学习

Discriminative Active Learning for Domain Adaptation

论文作者

Zhou, Fan, Shui, Changjian, Huang, Bincheng, Wang, Boyu, Chaib-draa, Brahim

论文摘要

旨在在不同但相关领域之间学习可转移功能的域适应性已经进行了充分的研究,并显示出出色的经验表现。以前的工作主要集中在使用对抗训练方法匹配边际特征分布的同时,同时假设源和目标域之间的条件关系保持不变,即$ $ $,忽略了条件偏移问题。但是,最近的工作表明存在这种有条件的转移问题,并可能阻碍适应过程。为了解决这个问题,我们必须利用目标域中标记的数据,但是收集标记的数据可能非常昂贵且耗时。为此,我们引入了一种歧视性主动学习方法,以减少数据注释的努力。具体而言,我们建议对神经网络进行三阶段的主动训练:不变的特征空间学习(第一阶段),不确定性和多样性标准及其在查询策略(第二阶段)的权衡(第二阶段),并重新训练目标标签(第三阶段)。使用四个基准数据集与现有领域适应方法的经验比较证明了所提出的方法的有效性。

Domain Adaptation aiming to learn a transferable feature between different but related domains has been well investigated and has shown excellent empirical performances. Previous works mainly focused on matching the marginal feature distributions using the adversarial training methods while assuming the conditional relations between the source and target domain remained unchanged, $i.e.$, ignoring the conditional shift problem. However, recent works have shown that such a conditional shift problem exists and can hinder the adaptation process. To address this issue, we have to leverage labelled data from the target domain, but collecting labelled data can be quite expensive and time-consuming. To this end, we introduce a discriminative active learning approach for domain adaptation to reduce the efforts of data annotation. Specifically, we propose three-stage active adversarial training of neural networks: invariant feature space learning (first stage), uncertainty and diversity criteria and their trade-off for query strategy (second stage) and re-training with queried target labels (third stage). Empirical comparisons with existing domain adaptation methods using four benchmark datasets demonstrate the effectiveness of the proposed approach.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源