论文标题

Shapeadv:生成形状感知的对抗3D点云

ShapeAdv: Generating Shape-Aware Adversarial 3D Point Clouds

论文作者

Lee, Kibok, Chen, Zhuoyuan, Yan, Xinchen, Urtasun, Raquel, Yumer, Ersin

论文摘要

我们介绍了Shapeadv,这是一个新的框架,用于研究3D点云空间中反映基础形状变化(例如几何变形和结构差异)的形状变化(例如几何变形和结构差异)的新型框架。我们通过利用点云自动编码器的学习潜在空间来开发形状感知的对抗3D点云攻击,其中在潜在空间中应用对抗性噪声。具体而言,我们通过使用辅助数据引导形状变形,提出了三种不同的变体,包括基于示例的变体,从而使生成的点云类似于同一类别中对象之间的形状变形。与先前的作品不同,所得的对抗性3D点云反映了3D点云空间中的形状变化,同时仍然靠近原始的变化。此外,对ModelNet40基准的实验评估表明,使用现有的Point Cloud Defence方法更难防御我们的对手,并且在分类器之间表现出更高的攻击可传递性。我们的形状感知的对抗性攻击与现有的基于点云的攻击是正交的,并阐明了3D深神经网络的脆弱性。

We introduce ShapeAdv, a novel framework to study shape-aware adversarial perturbations that reflect the underlying shape variations (e.g., geometric deformations and structural differences) in the 3D point cloud space. We develop shape-aware adversarial 3D point cloud attacks by leveraging the learned latent space of a point cloud auto-encoder where the adversarial noise is applied in the latent space. Specifically, we propose three different variants including an exemplar-based one by guiding the shape deformation with auxiliary data, such that the generated point cloud resembles the shape morphing between objects in the same category. Different from prior works, the resulting adversarial 3D point clouds reflect the shape variations in the 3D point cloud space while still being close to the original one. In addition, experimental evaluations on the ModelNet40 benchmark demonstrate that our adversaries are more difficult to defend with existing point cloud defense methods and exhibit a higher attack transferability across classifiers. Our shape-aware adversarial attacks are orthogonal to existing point cloud based attacks and shed light on the vulnerability of 3D deep neural networks.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源