论文标题

二维材料中激子结合能的广义缩放定律

Generalized scaling law for exciton binding energy in two-dimensional materials

论文作者

Ahmad, S., Zubair, M., Jalil, O., Mehmood, M. Q., Younis, U., Liu, X., Ang, K. W., Ang, L. K.

论文摘要

二维(2D)材料中的结合能计算对于确定其电子和光学特性至关重要,这与由于量子限制和介电筛选减少而导致的荷叶载体之间增强的库仑相互作用。基于具有修改的库仑电势($ 1/r^{β-2} $)在筛选的氢模型中的Schrödinger方程的完整解决方案,我们为激子结合能提供了广义和分析缩放定律,$e_β= e_ = e_ {0} \ times \ times \ big( $β$是一个分数差异参数,用于减少介电筛选。该模型能够提供58个单层2D和8个散装材料,并通过$β$提供58个单层2D和8个散装材料的精确结合能。对于给定的材料,$β$从$β$ = 3的批量3D材料到2.55 $ -2.7的价值,用于2D单层材料。使用$β_ {\ text {mean}} $ = 2.625,与现有模型相比,我们的模型将平均相对平方误差提高了3倍。结果可用于2D材料的最佳设计中的激子结合能的库仑工程。

Binding energy calculation in two-dimensional (2D) materials is crucial in determining their electronic and optical properties pertaining to enhanced Coulomb interactions between charge carriers due to quantum confinement and reduced dielectric screening. Based on full solutions of the Schrödinger equation in screened hydrogen model with a modified Coulomb potential ($1/r^{β-2}$), we present a generalized and analytical scaling law for exciton binding energy, $E_β = E_{0}\times \big (\,aβ^{b}+c\big )\, (μ/ε^{2})$, where $β$ is a fractional-dimension parameter accounted for the reduced dielectric screening. The model is able to provide accurate binding energies, benchmarked with the reported Bethe-Salpeter Equation (BSE) and experimental data, for 58 mono-layer 2D and 8 bulk materials respectively through $β$. For a given material, $β$ is varied from $β$ = 3 for bulk 3D materials to a value lying in the range 2.55$-$2.7 for 2D mono-layer materials. With $β_{\text{mean}}$ = 2.625, our model improves the average relative mean square error by 3 times in comparison to existing models. The results can be used for Coulomb engineering of exciton binding energies in the optimal design of 2D materials.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源