论文标题
关于指数的猜想
On the Exponent Conjectures
论文作者
论文摘要
如果$ p $是一个奇怪的素数,那么我们证明$ \ e(h_2(g,\ mathbb {z})))\ mid p \ \ e(g)$ for $ p $ 7类的$ p $组。我们证明,对于$ p+1 $ p+p+p+p+1 $,$ \ e(z(g))的$ p $组相同。如果$ \ e(g/z(g))$是$ 2,3 $或$ 6 $,我们还证明了Schurs的猜想。此外,我们证明,如果$ g $是一个可解决的长度$ d $和$ \ e(g)= p $的可解决方案组,则$ \ e(h_2(g,\ mthbb {z}}))\ mid(\ e(g))^{d-1} $。我们还表明,如果$ g $是指数5的有限$ 2 $或$ 3 $生成器组,则$ \ e(h_2(g,\ mathbb {z}})))\ mid(\ e(g))^2 $。
If $p$ is an odd prime, then we prove that $\e(H_2(G,\mathbb{Z})) \mid p\ \e(G)$ for $p$ groups of class 7. We prove the same for $p$ groups of class at most $p+1$ with $\e(Z(G))=p$. We also prove Schurs conjecture if $\e(G/Z(G))$ is $2,3$ or $6$. Furthermore we prove that if $G$ is a solvable group of derived length $d$ and $\e(G)=p$, then $\e(H_2(G,\mathbb{Z})) \mid (\e(G))^{d-1}$. We also show that if $G$ is a finite $2$ or $3$ generator group of exponent 5, then $\e(H_2(G,\mathbb{Z})) \mid (\e(G))^2$.