论文标题
与不连续性的某些变分积分的最小化器的规律性
Regularity of minimizers of some variational integrals with discontinuity
论文作者
论文摘要
我们在矢量有价值的情况下证明了规律性的属性,用于最小化表单$$ a(u)= \int_Ωa(x,x,x,x,x,u,u,du)dx $$的各种积分的最小化,而intemptand $ a(x,x,u,du)$不一定是$ x,$ x,$ x,$ x,$ x,$ x,$ x,$ x $ $ | $ $ $ | ex $ peq p,
We prove regularity properties in the vector valued case for minimizers of variational integrals of the form $$A(u) = \int_ΩA(x,u,Du) dx$$ where the integrand $A(x,u,Du)$ is not necessarily continuous respect to the variable $x,$ grows polinomially like $|ξ|^p,$ $p \geq 2.$