论文标题

暗物质光环的形状和对齐方式及其在39个强镜头簇中最明亮的聚类星系

Shapes and alignments of dark matter haloes and their brightest cluster galaxies in 39 strong lensing clusters

论文作者

Okabe, Taizo, Oguri, Masamune, Peirani, Sébastien, Suto, Yasushi, Dubois, Yohan, Pichon, Christophe, Kitayama, Tetsu, Sasaki, Shin, Nishimichi, Takahiro

论文摘要

我们使用Hubble Frontier Field(HFF)的39个巨大簇样品,与Hubble(Clash)以及抗晶状体镜头群集调查(REMICS REMICT(RELICS)一起研究,我们研究了45个暗物质(DM)光环(DM)光环(BCG)的形状和比对。我们通过强力透镜测量DM光环的形状,而BCG形状是从哈勃太空望远镜图像中的光谱衍生而来的。我们从此处介绍的大量大量集群样本中进行的测量为暗物质和聚集天体物理学提供了新的限制。我们发现,DM光环平均是高度伸长的,平均椭圆度为$ 0.482 \ pm 0.028 $,并且DM光晕的主要轴的位置角度及其BCG往往与对齐角度的平均值相符,该价值的平均值为$ 22.2 \ pm 3.9 $ 3.9 $ 3.9 $。我们发现,样本中的DM光环平均比其BCG的伸长率更高,其椭圆度的平均差异为0.11 \ pm 0.03 $。相反,地平线宇宙学水动力学模拟可以预测DM光环及其中央星系之间的平均相似椭圆率。尽管观察结果和模拟之间的这种差异可以通过其光晕质量尺度的差异来解释,但其他可能性包括强烈的透镜测量值固有的偏见,对巴里昂物理学的有限​​知识或对冷暗物质的限制。

We study shapes and alignments of 45 dark matter (DM) haloes and their brightest cluster galaxies (BCGs) using a sample of 39 massive clusters from Hubble Frontier Field (HFF), Cluster Lensing And Supernova survey with Hubble (CLASH), and Reionization Lensing Cluster Survey (RELICS). We measure shapes of the DM haloes by strong gravitational lensing, whereas BCG shapes are derived from their light profiles in Hubble Space Telescope images. Our measurements from a large sample of massive clusters presented here provide new constraints on dark matter and cluster astrophysics. We find that DM haloes are on average highly elongated with the mean ellipticity of $0.482\pm 0.028$, and position angles of major axes of DM haloes and their BCGs tend to be aligned well with the mean value of alignment angles of $22.2\pm 3.9$ deg. We find that DM haloes in our sample are on average more elongated than their BCGs with the mean difference of their ellipticities of $0.11\pm 0.03$. In contrast, the Horizon-AGN cosmological hydrodynamical simulation predicts on average similar ellipticities between DM haloes and their central galaxies. While such a difference between the observations and the simulation may well be explained by the difference of their halo mass scales, other possibilities include the bias inherent to strong lensing measurements, limited knowledge of baryon physics, or a limitation of cold dark matter.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源