论文标题

通过对抗域的概括进行新型人类对象的相互作用检测

Novel Human-Object Interaction Detection via Adversarial Domain Generalization

论文作者

Song, Yuhang, Li, Wenbo, Zhang, Lei, Yang, Jianwei, Kiciman, Emre, Palangi, Hamid, Gao, Jianfeng, Kuo, C. -C. Jay, Zhang, Pengchuan

论文摘要

我们在本文中研究了新型人类对象相互作用(HOI)检测的问题,旨在提高模型未见场景的概括能力。挑战主要源于物体和谓词的较大组成空间,这导致缺乏所有对象粘膜组合的足够的训练数据。结果,大多数现有的HOI方法都在很大程度上依赖对象先验,并且几乎无法概括地看不见组合。为了解决这个问题,我们提出了一个统一的对抗领域概括框架,以学习谓词预测的对象不变特征。为了衡量性能的提高,我们创建了HICO-DET数据集的新拆分,其中测试集中的HOI都是训练集中看不见的三重态类别。我们的实验表明,在HICO-DET数据集的新拆分中,提出的框架可显着提高性能高达50%,而在UNREL数据集中则高达125%,以进行辅助评估,以检测新的HOI。

We study in this paper the problem of novel human-object interaction (HOI) detection, aiming at improving the generalization ability of the model to unseen scenarios. The challenge mainly stems from the large compositional space of objects and predicates, which leads to the lack of sufficient training data for all the object-predicate combinations. As a result, most existing HOI methods heavily rely on object priors and can hardly generalize to unseen combinations. To tackle this problem, we propose a unified framework of adversarial domain generalization to learn object-invariant features for predicate prediction. To measure the performance improvement, we create a new split of the HICO-DET dataset, where the HOIs in the test set are all unseen triplet categories in the training set. Our experiments show that the proposed framework significantly increases the performance by up to 50% on the new split of HICO-DET dataset and up to 125% on the UnRel dataset for auxiliary evaluation in detecting novel HOIs.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源