论文标题

长期的短期记忆嵌入了无线性数据同化的裸色方案

Long short-term memory embedded nudging schemes for nonlinear data assimilation of geophysical flows

论文作者

Pawar, Suraj, Ahmed, Shady E., San, Omer, Rasheed, Adil, Navon, Ionel M.

论文摘要

降低的等级非线性过滤器越来越多地用于地球物理流的数据同化,但通常需要一组集合前向模拟来估计预测协方差。另一方面,由于需要避免使用更复杂的方法,预测者 - 矫正器类型的纽道型方法仍然很有吸引力。但是,对nuding增益矩阵的最佳估计可能很麻烦。在本文中,我们基于长期的短期记忆(LSTM)嵌入体系结构来估算一个完全非感染的复发性神经网络方法,以估计裸露的术语,该术语不仅在迫使状态轨迹迫使观测值迫使状态轨迹,还起到稳定器的作用。此外,我们的方法依赖于档案数据的力量,并且由于在任何神经网络应用中的转移学习力量,可以有效地对训练的模型进行重新训练。为了验证所提出的方法的可行性,我们使用Lorenz 96系统执行了双胞胎实验。我们的结果表明,与扩展的Kalman滤波器(EKF)和Ensemble Kalman Filter(ENKF)相比,提出的LSTM推动方法可以产生更准确的估计值。随着新兴的AI友好和模块化硬件技术和异质计算平台的可用性,我们表明我们的简单裸露框架在计算上比EKF或ENKF方法更有效。

Reduced rank nonlinear filters are increasingly utilized in data assimilation of geophysical flows, but often require a set of ensemble forward simulations to estimate forecast covariance. On the other hand, predictor-corrector type nudging approaches are still attractive due to their simplicity of implementation when more complex methods need to be avoided. However, optimal estimate of nudging gain matrix might be cumbersome. In this paper, we put forth a fully nonintrusive recurrent neural network approach based on a long short-term memory (LSTM) embedding architecture to estimate the nudging term, which plays a role not only to force the state trajectories to the observations but also acts as a stabilizer. Furthermore, our approach relies on the power of archival data and the trained model can be retrained effectively due to power of transfer learning in any neural network applications. In order to verify the feasibility of the proposed approach, we perform twin experiments using Lorenz 96 system. Our results demonstrate that the proposed LSTM nudging approach yields more accurate estimates than both extended Kalman filter (EKF) and ensemble Kalman filter (EnKF) when only sparse observations are available. With the availability of emerging AI-friendly and modular hardware technologies and heterogeneous computing platforms, we articulate that our simplistic nudging framework turns out to be computationally more efficient than either the EKF or EnKF approaches.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源