论文标题

$ \ mathbb {p}^{3} $的爆炸中无扭转

Torsion free instanton sheaves on the blow-up of $\mathbb{P}^{3}$ at a point

论文作者

Henni, Abdelmoubine Amar

论文摘要

我们考虑了casnati-coskun-genk-malaspina给出的intsanton捆绑定义的扩展,用于fano三倍,以便将非本地的$ \ \ \ \ \ \ widetilde {\ mathbb {p}^{3}},$ 3- $ 3- $ $ 3- $的$。有了拟议的定义,我们证明任何反思性的internon捆都必须在本地自由,并且严格的无扭力instanton或骨具有纯度尺寸的奇异性$1。$我们构建示例并研究其$μ-$稳定性。此外,这些系带带将在$ \ widetilde {\ mathbb {p}^{3}}}上(部分)压实Instantons模量空间的t'hooft组件(部分)中发挥作用。$最后,这些例子显示为平稳且平稳。

We consider an extension of the instanton bundles definition, given by Casnati-Coskun-Genk-Malaspina, for Fano threefolds, in order to include non locally-free ones on the blow-up $\widetilde{\mathbb{P}^{3}},$ of the projective $3-$space at a point. With the proposed definition, we prove that any reflexive instanton sheaf must be locally free, and that the strictly torsion free instanton sheaves have singularities of pure dimension $1.$ We construct examples and study their $μ-$stability. Furthermore, these sheaves will play a role in (partially) compactifying the t'Hooft component of the moduli space of instantons, on $\widetilde{\mathbb{P}^{3}}.$ Finally, examples of these are shown to be smooth and smoothable.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源