论文标题
Prunenet:通过全球重要性修剪渠道修剪
PruneNet: Channel Pruning via Global Importance
论文作者
论文摘要
通道修剪是加速深层神经网络的主要方法之一。大多数现有的修剪方法要么从划痕训练稀疏性诱导术语,例如套索,要么在预算网络中的修剪冗余通道,然后对网络进行微调。两种策略都有某种局限性:套索的使用在计算上是昂贵的,难以收敛的,并且由于正则化偏见而经常遭受较差的行为。以验证网络开头的方法可以根据网络参数的基本统计信息在整个层均匀地沿层均匀地修剪通道。这些方法要么忽略了某些CNN层比其他层更多余的事实,要么无法充分识别不同层中的冗余水平。在这项工作中,我们根据计算轻巧但有效的数据驱动的优化步骤来研究一种简单的效率方法,用于修剪通道,该步骤发现每层必要的宽度。以ILSVRC- $ 12 $确认我们方法的有效性进行的实验。在整个层上的不均匀修剪以重新连接为50美元,我们能够匹配最先进的频道修剪结果的失败,同时达到0.98美元的准确性。此外,我们表明我们的修剪重新连接 - $ 50 $网络的表现优于重新连接 - $ 34 $和RESNET- $ 18 $网络,并且我们的修剪resnet- $ 101 $ $ 101 $均优于resnet- $ 50 $。
Channel pruning is one of the predominant approaches for accelerating deep neural networks. Most existing pruning methods either train from scratch with a sparsity inducing term such as group lasso, or prune redundant channels in a pretrained network and then fine tune the network. Both strategies suffer from some limitations: the use of group lasso is computationally expensive, difficult to converge and often suffers from worse behavior due to the regularization bias. The methods that start with a pretrained network either prune channels uniformly across the layers or prune channels based on the basic statistics of the network parameters. These approaches either ignore the fact that some CNN layers are more redundant than others or fail to adequately identify the level of redundancy in different layers. In this work, we investigate a simple-yet-effective method for pruning channels based on a computationally light-weight yet effective data driven optimization step that discovers the necessary width per layer. Experiments conducted on ILSVRC-$12$ confirm effectiveness of our approach. With non-uniform pruning across the layers on ResNet-$50$, we are able to match the FLOP reduction of state-of-the-art channel pruning results while achieving a $0.98\%$ higher accuracy. Further, we show that our pruned ResNet-$50$ network outperforms ResNet-$34$ and ResNet-$18$ networks, and that our pruned ResNet-$101$ outperforms ResNet-$50$.