论文标题

具有可控的深生成模型和分子动力学的加速抗菌发现

Accelerating Antimicrobial Discovery with Controllable Deep Generative Models and Molecular Dynamics

论文作者

Das, Payel, Sercu, Tom, Wadhawan, Kahini, Padhi, Inkit, Gehrmann, Sebastian, Cipcigan, Flaviu, Chenthamarakshan, Vijil, Strobelt, Hendrik, Santos, Cicero dos, Chen, Pin-Yu, Yang, Yi Yan, Tan, Jeremy, Hedrick, James, Crain, Jason, Mojsilovic, Aleksandra

论文摘要

从头的治疗设计受到巨大的化学曲目和多种限制的挑战,例如高光谱效力和低毒性。我们提出了类(受控潜在属性空间采样) - 一种用于属性的分子生成的有效计算方法,该方法利用了对使用深层生成自动量编码器建模的信息的分子的分类器进行指导。我们通过将深度学习分类器与来自原子模拟的新特征结合使用,筛选生成的分子以获取其他关键属性。提出的方法用于设计具有强大宽光谱效力的无毒抗菌肽(AMP),这些效力是针对抗生素耐药性的新兴候选药物。仅二十个设计序列的合成和测试鉴定了两个新颖和极简的放大器,具有高效力,对不同的革兰氏阳性和革兰氏阴性病原体,包括一种通过膜孔形成,包括一种多种耐药性和一种抗生素耐药性K.肺炎。两种抗微生物均表现出低的体外和体内毒性,并减轻耐药性的发作。因此,提出的方法为更快,有效地发现有效和选择性广谱抗菌剂提供了可行的路径。

De novo therapeutic design is challenged by a vast chemical repertoire and multiple constraints, e.g., high broad-spectrum potency and low toxicity. We propose CLaSS (Controlled Latent attribute Space Sampling) - an efficient computational method for attribute-controlled generation of molecules, which leverages guidance from classifiers trained on an informative latent space of molecules modeled using a deep generative autoencoder. We screen the generated molecules for additional key attributes by using deep learning classifiers in conjunction with novel features derived from atomistic simulations. The proposed approach is demonstrated for designing non-toxic antimicrobial peptides (AMPs) with strong broad-spectrum potency, which are emerging drug candidates for tackling antibiotic resistance. Synthesis and testing of only twenty designed sequences identified two novel and minimalist AMPs with high potency against diverse Gram-positive and Gram-negative pathogens, including one multidrug-resistant and one antibiotic-resistant K. pneumoniae, via membrane pore formation. Both antimicrobials exhibit low in vitro and in vivo toxicity and mitigate the onset of drug resistance. The proposed approach thus presents a viable path for faster and efficient discovery of potent and selective broad-spectrum antimicrobials.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源