论文标题
su(2)上几乎所有的傅立叶系列的融合:持有人连续功能的情况
Almost everywhere convergence of Fourier series on SU(2): the case of Holder continuous functions
论文作者
论文摘要
我们考虑开放问题的一个方面:SU(2)上的每个正方形综合功能是否在任何地方都有收敛的傅立叶系列?令0 <alpha <1。我们向SU(2)中的每个可数集E展示,对应于SU(2)上的Alpha握手连续函数,其傅立叶序列在E上呈差异。我们还表明,每个Alpha-Holder连续函数的SU(2)几乎无处不在。
We consider an aspect of the open problem: Does every square-integrable function on SU(2) have an almost everywhere convergent Fourier series? Let 0 < alpha < 1. We show that to each countable set E in SU(2) there corresponds an alpha-Holder continuous function on SU(2) whose Fourier series diverges on E. We also show that the Fourier series of each alpha-Holder continuous function on SU(2) converges almost everywhere.