论文标题
有限多个间隔图的同时作用:一些动态和统计属性
Simultaneous Action of Finitely Many Interval Maps: Some Dynamical and Statistical Properties
论文作者
论文摘要
在本文中,我们考虑有限的许多间隔映射同时在实际行$ \ mathbb {r} $中在单位间隔$ i = [0,1] $上作用;每个都有最有限的跳跃不连续性,并研究某些重要的统计特性。即使我们在$ n $字母上使用符号空间来减少同时动态的情况以在适当的空间上映射,但我们的目的仍在解决奇迹性,复发率,相关性衰减和不变性原理,导致通过同时动作发出动力学的中心定理的中心限制原理。为了实现自己的目的,我们定义了各种ruelle操作员,通过各种方式使他们归一化并利用它们的光谱。
In this paper, we consider finitely many interval maps simultaneously acting on the unit interval $I = [0, 1]$ in the real line $\mathbb{R}$; each with utmost finitely many jump discontinuities and study certain important statistical properties. Even though we use the symbolic space on $N$ letters to reduce the case of simultaneous dynamics to maps on an appropriate space, our aim in this paper remains to resolve ergodicity, rates of recurrence, decay of correlations and invariance principles leading upto the central limit theorem for the dynamics that evolves through simultaneous action. In order to achieve our ends, we define various Ruelle operators, normalise them by various means and exploit their spectra.