论文标题

基于术法的异常检测,用于单对象白质分析

Tractometry-based Anomaly Detection for Single-subject White Matter Analysis

论文作者

Chamberland, Maxime, Genc, Sila, Raven, Erika P., Parker, Greg D., Cunningham, Adam, Doherty, Joanne, Bree, Marianne van den, Tax, Chantal M. W., Jones, Derek K.

论文摘要

迫切需要从范围的比较到扩散MRI(DMRI)的个体诊断以实现罕见病例和临床杂种组的分析。深度自动编码器显示出在神经影像数据中检测异常情况的巨大潜力。我们提出了一个框架,该框架以白质(WM)途径的流动方式运作,以学习规范性微结构特征,并区分那些在儿科人群中控制遗传风险的人。

There is an urgent need for a paradigm shift from group-wise comparisons to individual diagnosis in diffusion MRI (dMRI) to enable the analysis of rare cases and clinically-heterogeneous groups. Deep autoencoders have shown great potential to detect anomalies in neuroimaging data. We present a framework that operates on the manifold of white matter (WM) pathways to learn normative microstructural features, and discriminate those at genetic risk from controls in a paediatric population.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源